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L E V E R  TO THE EDITOR 

Towards a proof of two conjectures from quantum inference 
concerning quantum limits to knowledge of states 

Kingsley R W Jones 
School of Physics, University of Melbourne, Parkville 3052, Melbourne, Australia 

Received IO December 1990 

Abstract. We give a new entropic analogue of the recently repoaed infomation theoretic 
limits to knowledge of stiles. A natural relationship between the quantum correlation 
information and the quantum mechanical entropyis therebyrevealed. In addition we make 
some progress towards a rigorous proof of both results and a complete solution to the 
problem of asymptotic optimal measurement. In particular we employ elementary convex 
analysis to prove that the optimal operator valued measure must be a rank-one projection 
~if iuru measufe. ~~~.~ ~> 

From the researches of numerous workers, most notably Davies and Lewis [l], 
Helstrom [Z] and Holevo [3] we now know that information about quantum states 
is most generally obtained via a statistical correlation of form 

P(&) =(J,I4J,) (1) 

where J, is the state of the system and A denotes the apparatus reading, being a positive 
Hermitian operator belonging to some positive operator valued measure [l, 2 ,3 ]  
(hereafter a POV measure). Note that closure of the conditional viz p(AIJ,) dII[A] = 1, 
requires the POV measure to satisfy a possibly non-orthogonal (overcomplete) resolution 
,.F .. ..A., r - r 2 r lnr  21 ..,he-- rlnr A I  rlnnntnr -.. i..fin:m-i...n~ --A+:.,- un-xm.. 

operator, the corpus of which comprises the operator valued measure. Note that this 
extended formalism is of physical value in that examples of such generalized measure- 
ments certainly exist [4]. 

This letter concerns recent developments that have to do with the inversion of such 
data for the express purpose of inferring the quantum state of an ensemble. This is 
the quantum problem of determining initial conditions. Our interest lies in developing 
general constraints upon how well this can be done. 

Similar investigations have been made before using what we might term the quantum 
analogue of standard statistical decision theory [2,3]. However, in statistics there is 
an alternative methodology, the often maligned procedure of Bayesian inference. The 
first serious study of this possibility within quantum mechanics is due to Wootters [ 5 ] .  
Recently I have extensively elaborated this approach [6,7] and shown how it leads 
naturally to a theory of quantum inference that provides both straightforward data 
inversion and a simple general approach to the problem of constraining knowledge of 
states [7]. Here we shall briefly review the basic idea and then go on to continue earlier 
work [8] aimed at developing the fundamental quantum limits for finite-dimensional 
Hilbert space. 
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Consider N observations, with possibly different POV measures, upon N members 
of a pure ensemble described by state $. Let the observed data be denoted Q N  = {Ak]:=, . 
Then the conditional probability of this event is equal to 

N 

P(QNI$)= n (+IRI+). (2) 
k = I  

A natural inversion of this density to obtain p($IQN) results when we employ Bayes’s 
rule and normalize the right-hand side by the quantity 

P ( @ N ) = ] -  P(QNIJI) dA6 (3) 

P ( @ N ) = [  IJI)(JllP(JII@N)dAJ (4) 

where dh,- is a prior density chosen as the unique invariant measure on ray space. 
This procedure we justified at length in [7]. 

The natural quantum estimator of the state $ is the inferred density matrix 

for which an equation in closed form was first given in [7]. Notice that p ( Q N )  is always 
mixed reflecting imperfect inference of the unknown pure state $. This observation 
will form one plank of our development. 

The second plank concerns a quantity that measures the efficacy of any set dN of 
N POV measures thought of as an N-trial apparatus for the measurement of quantum 
states. This is the quantum correlation information of the apparatus [7] 

where dQN = II,”-, dIIk[&]. This quantity originates from Shannon’s communication 
theory [ 9 ]  but indeed has application to any problem of Bayesian inference (a largely 
overlooked possibility). In this context it gives the average information in nats (1  nat = 

]/log 2 bits) that readings Q N  of dN give about the unknown state $. 
The third plank concerns the fact that any N-trial inferred density is of generic form 

It is then intuitively obvious that the confidence of any such density is N-constrained 
by the Hilbert space geometry. We now give two inequalities that measure that 
constraint. 

Since all N-trial inferred densities p(glQN) are built from N factors ($I&), each 
of non-zero support in Hilbert space we have the two fundamental quantum 
inequalities: 

{ $ , Q N ) [ - T P N I ~ S U P J I P ( $ l Q N )  er+ lOgP($l@,v) d f i j  (7) 

S t ~ ( @ ~ ) l > i n f  s b ( @ N ) ]  (8) 
mN 

where S [ p ]  = -Tr p log p. Hereafter, we fix the Hilbert space as being complex of finite 
dimension d. Existence of a finite upper bound in the first inequality was demonstrated 
in [7]. However, the second i s  new, its existence follows trivially from the fact that 

E [O, log d l .  



Letter to the Editor L417 

The non-trivial aspect of these inequalities lies in the solution of a variational 
problem over all possible apparatus d, so as to determine the supremum and infimum 
as a function of N. The problem is made tractable by observing that we need only 
s!ek the sup and inf over all possible choices of N non-negative Hermitian operators 
A,, k € [ l ,  NI. That is to say we know the sup and inf are attained as some inferred 
density of some apparatus, but we also know that all such densities are parametrized 
by N such operators. 

In the article [ X I  we asserted a solution to the variational problem associated with 
the first inequality, restricted to the case of rank-one projection valued measures only. 
We now make a stronger assertion. 

In both cases the fundamental bounds are set by the following inferred density 

where the choice of 4 is unimportant. This we call the inferred density of maximal 
information. Furthermore, this remains the solution when the restriction to rank-one 
projection valued measures is relaxed. That is to say, the above density is extrema1 by 
both criteria for all POV measures. 

Here we shall prove that the rank-one projection valued measures are indeed 
optimai on aii POV measures. -What we have yet to prove is the conjecture that the 
above density solves the resulting restricted variational problem. 

Contingent upon the unproven component of our assertion are the following two 
conjectures 

N + l  
inf S [ p ( Q N ) ]  =log( N+d)-- log( N +  1) .  * N N + d  

These are obtained by substituting the density (9) into the right-hand sides of equations 
(7)  and (8). For suitable computational methods see [XI. For instance, one finds that 
the optima! inferred density matrix i s  

1 N &)=N+dl+- N+dl+)(41. 

Interestingly, this approaches the pure state 1 + ) ( + 1  in the limit N + W. 

The physical interpretation of both inequalities is very simple. In the absence of a 
priori knowledge one cannot know more than the quantity (lo) nats of information 
about the finite degrees of freedom of the state of a pure ensemble containing N 
members. Nor can the inferred density matrix have an entropy that is less than the 
lower bound ( 1 1 ) .  We stress that these limits are absolutely fundamental and cannot 
be circumvented. 

Denote by Pd the set of all inferred densities p ( @ I @ , )  defined by N rank-one 
orojectors and by P.4 its more general cousin upon N positive Hermitian operators. 
Note that in general any family of unconstrained probability densities form a convex 
set. This fact leads to a simple proof based upon elements of convex analysis [lo]. 
For a closely related problem see Davies [ll]. 

Consider any convex U (concave n )  real valued functional defined upon a convex 
domain. It is an elementary result of convexity theory that the maximum (minimum) 
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of such a convex (concave) functional must be attained at an extremal point of the 
convex domain (the result is not of itself powerful enough to say which of such points). 
Furthermore, for any subdomain that is not convex, one finds that the required extrema 
are attained upon those points of the subdomain that are also extremal points of its 
convex hull [lo]. 

One now checks that the right-hand sides of ( 7 )  and (8) define a convex and a 
concave functional, respectively. Next one verifies that any inferred density belonging 
to P i  can be written as a convex combination of at most d N  members of $P*. This 
point requires some attention. 

One obtains a canonical decomposition into just this number by replacing each Ak 
in (6) by its spectral decomposition (the operators are positive and Hermitian). The 
only point of difficulty involves splitting up the contributions to the normalization 
p ( Q N )  so as to ensure that the combination co5fficients sum to one. This is expedited 
by recognizing a freedom to renormalize the A,, so as to have unit trace. We note in 
passing that this actually means POV measures can be identified up to equivalence 
classes labelled by density matrix valued measures. The use of such measures is to be 
preferred. 

This brief excursion shows that the set of densities P i  contains the set P4 as its 
extremal points. Note that this result requires that Pd include only densities derived 
from rank-one projectors. Now it is important to recognize that neither set of densities 
is convex because some convex combinations of their elements cannot be written in 
the form (6). However, it is now obvious that the extremal points of the convex set 
conv SP+ are just the full set of points P+. Furthermore, this convex hull contains P i  
as a proper subset. 

Applying the theorem described at the outset we can now deduce the desired result 
that the extrema of both functionals are attained upon densities derived from the 
rank-one projection valued measures. 

We have reduced the problem of constraining knowledge of quantum states to the 
examination of rank-one POV measures only. To this restricted problem we already 
have good evidence that (9) provides the solution. We now give a rigorous proof of 
(10) and ( 1  1 )  for the special case N = 2. 

Using the formulae of [ 7 , 8 ]  one can verify that the expressions to be maximized 
and minimized (respectively) in equations ( 7 )  and (8) are 

(12) 
2 T r A , i 2  

RHS = log d ( d  + 1)  + 2 [ 9 ( 2 )  -"(d + 2 ) ]  -log(l +Tr A,%) +------71 
1 + Tr A, A, 

1 2 A,+A,A2+A2Al  +A, 
R H S = S  -I+-  

[ d : 2  d + 2  [2+2TrAi,A2] 
where we have utilized the freedom to normalize all Ak to have unit trace and 9 
denotes the digamma function. 

Now if we set p = Tr A,A, in the first case and recognize that p E [O, !I it becPmes 
a simple calculus problem to verify that the maximum is attained when A, and A, are 
equal and idempotent. 

In the second case we see that the inferred density matrix assumes the generic form 

where p * ( A , ,  A2) is itself a density matrix. Solving the appropriate variational problem 
under this assumption alone shows that the minimum is attained uniquely when p* is 
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idempotent. Inspection of the formula 

(A, +A,)’+ (A, -&)+(A, -A;) 
[2+2TrAi,A,] P * ( A  9 4) = 

then reveals that this is only possible when A, and A, are again equal and idempotent. 
So we certainly know ( 9 )  is the optimal inference for N = 2, the same method of 

proof appears to extend to embrace all N in the second case. Using the explicit formula 
for p(aN) that was given in [7] we can show that the inferred density matrix has the 
general decomposition 

where p*(aN) is certainly of trace one. If one can show that it is also positive (which 
should be so) then the result (1  1) follows without difficulty. 

The bounds (10)  and (1  1) would be of little value were it not for the fact that there 
exist apparatus dN whose average behaviour approaches the optimal possible inference 
arbitrarily closely in the limit as N + CO. 

One such apparatus was characterized in the paper [PI, it corresponds to repeated 
use of the isotropic POV measure p(+ l$ )= l (+ l$ )12  where $ varies continuously over 
the pure state manifold and is ascribed a uniform measure. Holevo [3] has studied 
such POV measures before as an example of what he calls a covariant instrument. 

Having calculated its asymptotic behaviour in [SI we now strongly suspect that 
this measure is uniquely the optimal apparatus. To prove this one must show that this 
measure attains uniquely the supremum of {$, Q N } [ d N ] ,  for all N (we already know 
that it is asymptotically optimal). Proving the lesser statement concerning the optimal 
inference establishes the absolute constraints, whereas the harder optimal apparatus 
problem establishes their feasibility. 
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